If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-5x=142
We move all terms to the left:
x^2-5x-(142)=0
a = 1; b = -5; c = -142;
Δ = b2-4ac
Δ = -52-4·1·(-142)
Δ = 593
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{593}}{2*1}=\frac{5-\sqrt{593}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{593}}{2*1}=\frac{5+\sqrt{593}}{2} $
| -(3x+6)=2+3x | | 4{2x-7}=8x-3 | | x-12.98=5.033 | | 4x+19+6x-7=180 | | 1/3(9k+3)=−2(k−8) | | 4(-5)+2y=10 | | 42+3b=-4b-1 | | 464=24x+464 | | 8/c=11/6 | | 2/3(n)-2/3=n/6+4/3 | | 2e+5=20e-5 | | 1/5x+16=4/5x-11 | | (X+1)^2-20(x+1)+64=0 | | 8^-4y=9 | | 0.5x-32=0.75+5 | | 1.8=2.1h-5.7-4.6 | | -4x+7=16 | | (x*6x+3)/2x+1=1 | | -3.1x-5=-2.6x+4 | | 0.5x+32=0.75x+15 | | 5s+5=8s+3 | | 0.00348+(6.2x10-2)= | | 4(-5)+5y=10 | | -3/8x+19=-11 | | 2(4x−4)+4x+5= −111 | | (x*6x+3)/2x+1=x | | -3/4x+51=-33 | | 6(5x+5)=30x-1 | | 1/11y+3=-9 | | 3x-30=145 | | P(x)=4x-25 | | 5x-(7x+4)=5×-25 |